
-- --

An Intr oduction to the C shell

William Joy
(revised for 4.3BSD by Mark Seiden)

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter forUNIX† systems. Itincorporates
good features of other shells and ahistory mechanism similar to theredo of INTERLISP.
While incorporating many features of other shells which make writing shell programs
(shell scripts) easier, most of the features unique tocsh are designed more for the interac-
tive UNIX user.

UNIX users who have read a general introduction to the system will find a valuable
basic explanation of the shell here.Simple terminal interaction withcsh is possible after
reading just the first section of this document.The second section describes the shell’s
capabilities which you can explore after you have begun to become acquainted with the
shell. Latersections introduce features which are useful, but not necessary for all users of
the shell.

Additional information includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

Intr oduction

A shell is a command language interpreter. Csh is the name of one particular command interpreter
on UNIX . The primary purpose ofcsh is to translate command lines typed at a terminal into system actions,
such as invocation of other programs.Csh is a user program just like any you might write. Hopefully, csh
will be a very useful program for you in interacting with theUNIX system.

In addition to this document, you will want to refer to a copy of the UNIX User Reference Manual.
Thecsh documentation in section 1 of the manual provides a full description of all features of the shell and
is the definitive reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of commands,
and words which have special meaning in discussing the shell andUNIX . Many of the words are defined in
a glossary at the end of this document.If you don’t know what is meant by a word, you should look for it
in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions ofcsh and aided in its debug-
ging and in the debugging of its documentation.I would especially like to thank Michael Ubell who made
the crucial observation that history commands could be done well over the word structure of input text, and
implemented a prototype history mechanism in an older version of the shell.Eric Allman has also provided
a large number of useful comments on the shell, helping to unify those concepts which are present and to

† UNIX is a trademark of Bell Laboratories.

-- --

USD:4-2 AnIntroduction to the C shell

identify and eliminate useless and marginally useful features.Mike O’Brien suggested the pathname hash-
ing mechanism which speeds command execution. JimKulp added the job control and directory stack
primitives and added their documentation to this introduction.

-- --

An Introduction to the C shell USD:4-3

1. Terminal usage of the shell

1.1. Thebasic notion of commands

A shell in UNIX acts mostly as a medium through which otherprograms are invoked. While it has a
set ofbuiltin functions which it performs directly, most commands cause execution of programs that are, in
fact, external to the shell.The shell is thus distinguished from the command interpreters of other systems
both by the fact that it is just a user program, and by the fact that it is used almost exclusively as a mecha-
nism for invoking other programs.

Commandsin theUNIX system consist of a list of strings orwords interpreted as acommand name
followed byarguments.Thus the command

mail bill

consists of two words. Thefirst word mail names the command to be executed, in this case the mail pro-
gram which sends messages to other users.The shell uses the name of the command in attempting to
execute it for you. It will look in a number ofdirectoriesfor a file with the namemail which is expected to
contain the mail program.

The rest of the words of the command are given as argumentsto the command itself when it is
executed. Inthis case we specified also the argumentbill which is interpreted by themail program to be
the name of a user to whom mail is to be sent.In normal terminal usage we might use themail command
as follows.

% mail bill
I hav ea question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed a message to send tobill and ended this message with a ˆD which sent an end-of-file
to the mail program.(Here and throughout this document, the notation ‘‘ˆx’’ i s to be read ‘‘control-x’’ and
represents the striking of thex key while the control key is held down.) Themail program then echoed the
characters ‘EOT’ and transmitted our message.The characters ‘% ’ were printed before and after the mail
command by the shell to indicate that input was needed.

After typing the ‘% ’ prompt the shell was reading command input from our terminal.We typed a
complete command ‘mail bill’.The shell then executed themail program with argumentbill and went
dormant waiting for it to complete.The mail program then read input from our terminal until we signalled
an end-of-file via typing a ˆD after which the shell noticed that mail had completed and signaled us that it
was ready to read from the terminal again by printing another ‘% ’ prompt.

This is the essential pattern of all interaction withUNIX through the shell.A complete command is
typed at the terminal, the shell executes the command and when this execution completes, it prompts for a
new command. Ifyou run the editor for an hour, the shell will patiently wait for you to finish editing and
obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tset command, which sets the default
erase andkill characters on your terminal − the erase character erases the last character you typed and the
kill character erases the entire line you have entered so far. By default, the erase character is the delete key
(equivalent to ‘ˆ?’) and the kill character is ‘ˆU’.Some people prefer to make the erase character the
backspace key (equivalent to ‘ˆH’). You can make this be true by typing

tset −e

which tells the programtset to set the erase character to tset’s default setting for this character (a
backspace).

-- --

USD:4-4 AnIntroduction to the C shell

1.2. Flagarguments

A useful notion inUNIX is that of aflag argument. Whilemany arguments to commands specify file
names or user names, some arguments rather specify an optional capability of the command which you
wish to invoke. By convention, such arguments begin with the character ‘−’ (hyphen). Thusthe command

ls

will produce a list of the files in the currentworking directory. The option−s is the size option, and

ls −s

causesls to also give, for each file the size of the file in blocks of 512 characters.The manual section for
each command in theUNIX reference manual gives the available options for each command.The ls com-
mand has a large number of useful and interesting options.Most other commands have either no options or
only one or two options. Itis hard to remember options of commands which are not used very frequently,
so mostUNIX utilities perform only one or two functions rather than having a large number of hard to
remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be executed with this
input and/or output done to a file.

Thus suppose we wish to save the current date in a file called ‘now’. Thecommand

date

will print the current date on our terminal.This is because our terminal is the default standard output for
the date command and the date command prints the date on its standard output.The shell lets usredirect
thestandard output of a command through a notation using themetacharacter ‘>’ and the name of the file
where output is to be placed.Thus the command

date > now

runs thedate command such that its standard output is the file ‘now’ rather than the terminal.Thus this
command places the current date and time into the file ‘now’. It is important to know that thedate com-
mand was unaware that its output was going to a file rather than to the terminal.The shell performed this
redirection before the command began executing.

One other thing to note here is that the file ‘now’ need not have existed before thedate command
was executed; the shell would have created the file if it did not exist. And if the file did exist? If it had
existed previously these previous contents would have been discarded!A shell optionnoclobberexists to
prevent this from happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with ‘>’ and all other files.Thus the default is for
files to be permanent.If you wish to create a file which will be removed automatically, you can begin its
name with a ‘#’ character, this ‘scratch’ character denotes the fact that the file will be a scratch file.*The
system will remove such files after a couple of days, or sooner if file space becomes very tight. Thus, in
running thedate command above, we don’t really want to save the output forever, so we would more likely
do

date > #now

*Note that if your erase character is a ‘#’, you will have to precede the ‘#’ with a ‘\’.The fact that the ‘#’ character is the
old (pre-CRT) standard erase character means that it seldom appears in a file name, and allows this convention to be used for
scratch files.If you are using aCRT, your erase character should be a ˆH, as we demonstrated in section 1.1 how this could
be set up.

-- --

An Introduction to the C shell USD:4-5

1.4. Metacharactersin the shell

The shell has a large number of special characters (like ‘>’) which indicate special functions.We say
that these notations have syntactic andsemanticmeaning to the shell.In general, most characters which
are neither letters nor digits have special meaning to the shell.We shall shortly learn a means ofquotation
which allows us to usemetacharacters without the shell treating them in any special way.

Metacharacters normally have effect only when the shell is reading our input.We need not worry
about placing shell metacharacters in a letter we are sending viamail, or when we are typing in text or data
to some other program.Note that the shell is only reading input when it has prompted with ‘% ’ (although
we can type our input even before it prompts).

1.5. Input fr om files; pipelines

We learned above how to redirect thestandard output of a command to a file.It is also possible to
redirect thestandard input of a command from a file.This is not often necessary since most commands
will read from a file whose name is given as an argument. We can give the command

sort < data

to run thesort command with standard input, where the command normally reads its input, from the file
‘data’. We would more likely say

sort data

letting thesort command open the file ‘data’ for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from itsstandard input. Since we did notredirect the standard
input, it would sort lines as we typed them on the terminal until we typed a ˆD to indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command with the stan-
dard input of another, i.e. to run the commands in a sequence known as apipeline. For instance the com-
mand

ls −s

normally produces a list of the files in our directory with the size of each in blocks of 512 characters.If we
are interested in learning which of our files is largest we may wish to have this sorted by size rather than by
name, which is the default way in whichls sorts. We could look at the many options ofls to see if there
was an option to do this but would eventually discover that there is not.Instead we can use a couple of sim-
ple options of thesort command, combining it withls to get what we want.

The−n option of sort specifies a numeric sort rather than an alphabetic sort.Thus

ls −s | sort −n

specifies that the output of thels command run with the option−s is to bepiped to the commandsort run
with the numeric sort option.This would give us a sorted list of our files by size, but with the smallest first.
We could then use the−r reverse sort option and thehead command in combination with the previous
command doing

ls −s | sort −n −r | head −5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks.We hav erun this to
the standard input of thesort command asking it to sort numerically in reverse order (largest first). This
output has then been run into the commandhead which gives us the first few lines. Inthis case we have
askedhead for the first 5 lines.Thus this command gives us the names and sizes of our 5 largest files.

The notation introduced above is called thepipe mechanism. Commandsseparated by ‘| ’ characters
are connected together by the shell and the standard output of each is run into the standard input of the next.
The leftmost command in a pipeline will normally take its standard input from the terminal and the

-- --

USD:4-6 AnIntroduction to the C shell

rightmost will place its standard output on the terminal.Other examples of pipelines will be given later
when we discuss the history mechanism; one important use of pipes which is illustrated there is in the rout-
ing of information to the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments.UNIX pathnamesconsist
of a number ofcomponentsseparated by ‘/’.Each component except the last names a directory in which
the next component resides, in effect specifying thepath of directories to follow to reach the file.Thus the
pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory of theroot directory ‘/’. Within this directory
the file named is ‘motd’ which stands for ‘message of the day’.A pathnamethat begins with a slash is said
to be anabsolutepathname since it is specified from the absolute top of the entire directory hierarchy of
the system (theroot). Pathnameswhich do not begin with ‘/’ are interpreted as starting in the current
working directory, which is, by default, yourhome directory and can be changed dynamically by thecd
change directory command.Such pathnames are said to berelative to the working directory since they are
found by starting in the working directory and descending to lower levels of directories for eachcomponent
of the pathname.If the pathname contains no slashes at all then the file is contained in the working direc-
tory itself and the pathname is merely the name of the file in this directory. Absolute pathnames have no
relation to the working directory.

Most filenames consist of a number of alphanumeric characters and ‘.’s (periods). Infact, all printing
characters except ‘/’ (slash) may appear in filenames.It is inconvenient to have most non-alphabetic char-
acters in filenames because many of these have special meaning to the shell.The character ‘.’ (period) is
not a shell-metacharacter and is often used to separate theextension of a file name from the base of the
name. Thus

prog.c prog.o prog.errs prog.output

are four related files.They share abaseportion of a name (a base portion being that part of the name that
is left when a trailing ‘.’ and following characters which are not ‘.’ are stripped off). Thefile ‘prog.c’ might
be the source for a C program, the file ‘prog.o’ the corresponding object file, the file ‘prog.errs’ the errors
resulting from a compilation of the program and the file ‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation

prog.*

This expression is expanded by the shell, before the command to which it is an argument is executed, into a
list of names which begin with ‘prog.’. The character ‘*’ here matches any sequence (including the empty
sequence) of characters in a file name.The names which match are alphabetically sorted and placed in the
argument listof the command.Thus the command

echo prog.*

will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above. The echo
command receives four words as arguments, even though we only typed one word as as argument directly.
The four words were generated byfilename expansionof the one input word.

Other notations forfilename expansionare also available. Thecharacter ‘?’ matches any single char-
acter in a filename.Thus

echo ??? ???

will echo a line of filenames; first those with one character names, then those with two character names,
and finally those with three character names.The names of each length will be independently sorted.

-- --

An Introduction to the C shell USD:4-7

Another mechanism consists of a sequence of characters between ‘[’ and ‘]’.This metasequence
matches any single character from the enclosed set.Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters around a ‘−’ in this notation to denote a range.
Thus

chap.[1−5]

might match files

chap.1 chap.2 chap.3 chap.4 chap.5

if they existed. Thisis shorthand for

chap.[12345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command (anargument list)con-
tains filename expansion syntax, and if this filename expansion syntax fails to match any existing file
names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character ‘.’ at the beginning are treated specially.
Neither ‘*’ or ‘?’ or the ‘[’ ‘]’ mechanism will match it.This prevents accidental matching of the filenames
‘.’ and ‘..’ i n the working directory which have special meaning to the system, as well as other files such as
.cshrc which are not normally visible.We will discuss the special role of the file.cshrc later.

Another filename expansion mechanism gives access to the pathname of thehomedirectory of other
users. Thisnotation consists of the character ‘˜’ (tilde) followed by another user’s login name.For instance
the word ‘˜bill’ w ould map to the pathname ‘/usr/bill’ if the home directory for ‘bill’ was ‘/usr/bill’. Since,
on large systems, users may have login directories scattered over many different disk volumes with differ-
ent prefix directory names, this notation provides a convenient way of accessing the files of other users.

A special case of this notation consists of a ‘˜’ alone, e.g. ‘˜/mbox’.This notation is expanded by the
shell into the file ‘mbox’ in yourhome directory, i.e. into ‘/usr/bill/mbox’ for me on Ernie Co-vax, the
UCB Computer Science Department VAX machine, where this document was prepared.This can be very
useful if you have usedcd to change to another directory and have found a file you wish to copy usingcp.
If I give the command

cp thatfile ˜

the shell will expand this command to

cp thatfile /usr/bill

since my home directory is /usr/bill.

There also exists a mechanism using the characters ‘{’ and ‘}’ for abbreviating a set of words which
have common parts but cannot be abbreviated by the above mechanisms because they are not files, are the
names of files which do not yet exist, are not thus conveniently described.This mechanism will be
described much later, in section 4.2, as it is used less frequently.

1.7. Quotation

We hav ealready seen a number of metacharacters used by the shell.These metacharacters pose a
problem in that we cannot use them directly as parts of words. Thusthe command

-- --

USD:4-8 AnIntroduction to the C shell

echo *

will not echo the character ‘*’.It will either echo an sorted list of filenames in the currentworking direc-
tory, or print the message ‘No match’ if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers, digits, ‘/’, ‘.’ or ‘−’
in an argument word to a command is to enclose it with single quotation characters ‘´’, i.e.

echo ´*´

There is one special character ‘!’ which is used by thehistory mechanism of the shell and which cannot be
escapedby placing it within ‘´’ characters.It and the character ‘´’ itself can be preceded by a single ‘\’ to
prevent their special meaning.Thus

echo \´\!

prints

´!

These two mechanisms suffice to place any printing character into a word which is an argument to a shell
command. They can be combined, as in

echo \´´*´

which prints

´*

since the first ‘\’ escaped the first ‘´’ and the ‘*’ was enclosed between ‘´’ characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are several ways
to force it to stop.For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal.This is likely to continue
for several minutes unless you stop it.You can send anINTERRUPT signal to thecat command by typing
ˆC on your terminal.*Sincecat does not take any precautions to avoid or otherwise handle this signal the
INTERRUPT will cause it to terminate.The shell notices thatcat has terminated and prompts you again with
‘% ’. If you hit INTERRUPT again, the shell will just repeat its prompt since it handlesINTERRUPT signals
and chooses to continue to execute commands rather than terminating like cat did, which would have the
effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their standard
input. Thusthemail program in the first example above was terminated when we typed a ˆD which gener-
ates an end-of-file from the standard input.The shell also terminates when it gets an end-of-file printing
‘logout’; UNIX then logs you off the system.Since this means that typing too many ˆD’s can accidentally
log us off, the shell has a mechanism for preventing this. This ignoreeof option will be discussed in section
2.2.

If a command has its standard input redirected from a file, then it will normally terminate when it
reaches the end of this file.Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a ˆD.This is because it read to the end-of-file of our
file ‘prepared.text’ in which we placed a message for ‘bill’ with an editor program.We could also have
done

*On some older Unix systems theDEL or RUBOUT key has the same effect. "stty all" will tell you the INTR key value.

-- --

An Introduction to the C shell USD:4-9

cat prepared.text | mailbill

since thecat command would then have written the text through the pipe to the standard input of the mail
command. Whenthecat command completed it would have terminated, closing down the pipeline and the
mail command would have received an end-of-file from it and terminated.Using a pipe here is more com-
plicated than redirecting input so we would more likely use the first form.These commands could also
have been stopped by sending anINTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with the possi-
bility of continuing execution later. This is done by sending aSTOP signal via typing a ˆZ.This signal
causes all commands running on the terminal (usually one but more if a pipeline is executing) to become
suspended. Theshell notices that the command(s) have been suspended, types ‘Stopped’ and then prompts
for a new command. Thepreviously executing command has been suspended, but otherwise unaffected by
the STOP signal. Any other commands can be executed while the original command remains suspended.
The suspended command can be continued using thefg command with no arguments. Theshell will then
retype the command to remind you which command is being continued, and cause the command to resume
execution. Unlessany input files in use by the suspended command have been changed in the meantime,
the suspension has no effect whatsoever on the execution of the command.This feature can be very useful
during editing, when you need to look at another file before continuing. An example of command suspen-
sion follows.

% mail harold
Someone just copied a big file into my directory and its name is
ˆZ
Stopped
% ls
funnyfile
prog.c
prog.o
% jobs
[1] + Stopped mailharold
% fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he wanted to
mention. Themail command was suspended by typing ˆZ.When the shell noticed that the mail program
was suspended, it typed ‘Stopped’ and prompted for a new command. Thenthe ls command was typed to
find out the name of the file.The jobs command was run to find out which command was suspended. At
this time thefg command was typed to continue execution of the mail program.Input to the mail program
was then continued and ended with a ˆD which indicated the end of the message at which time the mail pro-
gram typed EOT. The jobs command will show which commands are suspended.The ˆZ should only be
typed at the beginning of a line since everything typed on the current line is discarded when a signal is sent
from the keyboard. Thisalso happens onINTERRUPT, and QUIT signals. Moreinformation on suspending
jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to stop them
somewhat ungracefully. This can be done by sending them aQUIT signal, sent by typing a ˆ\.This will usu-
ally provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the running program’s state when
it terminated due to theQUIT signal. You can examine this file yourself, or forward information to the
maintainer of the program telling him/her where thecore file is.

-- --

USD:4-10 AnIntroduction to the C shell

If you run background commands (as explained in section 2.6) then these commands will ignore
INTERRUPT andQUIT signals at the terminal.To stop them you must use thekill command. Seesection 2.6
for an example.

If you want to examine the output of a command without having it move off the screen as the output
of the

cat /etc/passwd

command will, you can use the command

more /etc/passwd

Themore program pauses after each complete screenful and types ‘−−More−−’ at which point you can hit
a space to get another screenful, a return to get another line, a ‘?’ to get some help on other commands, or a
‘q’ to end themore program. You can also use more as a filter, i.e.

cat /etc/passwd | more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the ˆS key to stop the typeout.
The typeout will resume when you hit ˆQ or any other key, but ˆQ is normally used because it only restarts
the output and does not become input to the program which is running.This works well on low-speed ter-
minals, but at 9600 baud it is hard to type ˆS and ˆQ fast enough to paginate the output nicely, and a pro-
gram likemore is usually used.

An additional possibility is to use the ˆO flush output character; when this character is typed, all out-
put from the current command is thrown away (quickly) until the next input read occurs or until the next
shell prompt.This can be used to allow a command to complete without having to suffer through the out-
put on a slow terminal; ˆO is a toggle, so flushing can be turned off by typing ˆO again while output is being
flushed.

1.9. Whatnow?

We hav eso far seen a number of mechanisms of the shell and learned a lot about the way in which it
operates. Theremaining sections will go yet further into the internals of the shell, but you will surely want
to try using the shell before you go any further. To try it you can log in toUNIX and type the following
command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get onto the
system. ThusI would use ‘chsh bill /bin/csh’.You only have to do this once; it takes effect at next
login. You are now ready to try usingcsh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is ‘/bin/sh’.
In fact, much of the above discussion is applicable to ‘/bin/sh’.The next section will introduce many fea-
tures particular tocsh so you should change your shell tocsh before you begin reading it.

-- --

An Introduction to the C shell USD:4-11

2. Detailson the shell for terminal users

2.1. Shellstartup and termination

When you login, the shell is started by the system in yourhome directory and begins by reading
commands from a file.cshrc in this directory. All shells which you may start during your terminal session
will read from this file.We will later see what kinds of commands are usefully placed there.For now we
need not have this file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads commands from.cshrc, read
commands from a file.login also in your home directory. This file contains commands which you wish to
do each time you login to theUNIX system. My.login file looks something like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt}users" ; users
alias ts \

´set noglob ; eval `tset −s −m dialup:c100rv4pna −m plugboard:?hp2621nl *`´;
ts; stty intr ˆC kill ˆU crt
set time=15 history=10
msgs −f
if (−e $mail) then

echo "${prompt}mail"
mail

endif

This file contains several commands to be executed byUNIX each time I login.The first is aset com-
mand which is interpreted directly by the shell.It sets the shell variableignoreeofwhich causes the shell to
not log me off i f I hit ˆD. Rather, I use thelogout command to log off of the system.By setting themail
variable, I ask the shell to watch for incoming mail to me.Every 5 minutes the shell looks for this file and
tells me if more mail has arrived there. Analternative to this is to put the command

biff y

in place of thisset; this will cause me to be notified immediately when mail arrives, and to be shown the
first few lines of the new message.

Next I set the shell variable ‘time’ to ‘15’ causing the shell to automatically print out statistics lines
for commands which execute for at least 15 seconds ofCPU time. Thevariable ‘history’ is set to 10 indicat-
ing that I want the shell to remember the last 10 commands I type in itshistory list, (described later).

I create analias ‘‘ ts’’ which executes atset(1) command setting up the modes of the terminal.The
parameters totset indicate the kinds of terminal which I usually use when not on a hardwired port.I then
execute ‘‘ts’’ and also use thestty command to change the interrupt character to ˆC and the line kill charac-
ter to ˆU.

I then run the ‘msgs’ program, which provides me with any system messages which I have not seen
before; the ‘−f’ option here prevents it from telling me anything if there are no new messages. Finally, if
my mailbox file exists, then I run the ‘mail’ program to process my mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processing my.login file and begin
reading commands from the terminal, prompting for each with ‘% ’.When I log off (by giving thelogout
command) the shell will print ‘logout’ and execute commands from the file ‘.logout’ if it exists in my home
directory. After that the shell will terminate andUNIX will log me off the system.If the system is not going
down, I will receive a new login message.In any case, after the ‘logout’ message the shell is committed to
terminating and will take no further input from my terminal.

-- --

USD:4-12 AnIntroduction to the C shell

2.2. Shellvariables

The shell maintains a set ofvariables. We saw above the variableshistory andtime which had val-
ues ‘10’ and ‘15’. In fact, each shell variable has as value an array of zero or morestrings. Shell variables
may be assigned values by the set command.It has several forms, the most useful of which was given
above and is

set name=value

Shell variables may be used to store values which are to be used in commands later through a substi-
tution mechanism.The shell variables most commonly referenced are, however, those which the shell itself
refers to.By changing the values of these variables one can directly affect the behavior of the shell.

One of the most important variables is the variablepath. This variable contains a sequence of direc-
tory names where the shell searches for commands.Theset command with no arguments shows the value
of all variables currently defined (we usually sayset) in the shell.The default value for path will be shown
by set to be

% set
argv ()
cwd /usr/bill
home /usr/bill
path (./usr/ucb /bin /usr/bin)
prompt %
shell /bin/csh
status 0
term c100rv4pna
user bill
%

This output indicates that the variable path points to the current directory ‘.’ and then ‘/usr/ucb’, ‘/bin’ and
‘/usr/bin’. Commandswhich you may write might be in ‘.’ (usually one of your directories).Commands
developed at Berkeley, liv e in ‘/usr/ucb’ while commands developed at Bell Laboratories live in ‘/bin’ and
‘/usr/bin’.

A number of locally developed programs on the system live in the directory ‘/usr/local’.If we wish
that all shells which we invoke to hav eaccess to these new programs we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)

in our file.cshrc in our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned topath has changed.

One thing you should be aware of is that the shell examines each directory which you insert into your
path and determines which commands are contained there.Except for the current directory ‘.’, which the
shell treats specially, this means that if commands are added to a directory in your search path after you
have started the shell, they will not necessarily be found by the shell.If you wish to use a command which
has been added in this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added command.Since the shell has to look in the current directory ‘.’ on each command, placing it
at the end of the path specification usually works equivalently and reduces overhead.

† Another directory that might interest you is /usr/new, which contains many useful user-contributed programs provided
with Berkeley Unix.

-- --

An Introduction to the C shell USD:4-13

Other useful built in variables are the variablehome which shows your home directory, cwd which
contains your current working directory, the variableignoreeof which can be set in your.login file to tell
the shell not to exit when it receives an end-of-file from a terminal (as described above). The variable
‘ignoreeof ’ is one of several variables which the shell does not care about the value of, only whether they
areset or unset.Thus to set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable ‘ignoreeof’ no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variablesnoclobberandmail. The metasyn-
tax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents of the
named file. In this way you may accidentally overwrite a file which is valuable. Ifyou would prefer that
the shell not overwrite files in this way you can

set noclobber

in your .login file. Thentrying to do

date > now

would cause a diagnostic if ‘now’ existed already. You could type

date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!’ is a special metasyntax indicating that
clobbering the file is ok.†

2.3. Theshell’s history list

The shell can maintain ahistory list into which it places the words of previous commands.It is pos-
sible to use a notation to reuse commands or words from commands in forming new commands. This
mechanism can be used to repeat previous commands or to correct minor typing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechanism of the
shell. Inthis example we have a very simple C program which has a bug (or two) in it in the file ‘bug.c’,
which we ‘cat’ out on our terminal.We then try to run the C compiler on it, referring to the file again as
‘!$’, meaning the last argument to the previous command.Here the ‘!’ is the history mechanism invocation
metacharacter, and the ‘$’ stands for the last argument, by analogy to ‘$’ in the editor which stands for the
end of the line.The shell echoed the command, as it would have been typed without use of the history
mechanism, and then executed it. The compilation yielded error diagnostics so we now run the editor on
the file we were trying to compile, fix the bug, and run the C compiler again, this time referring to this com-
mand simply as ‘!c’, which repeats the last command which started with the letter ‘c’.If there were other
commands starting with ‘c’ done recently we could have said ‘!cc’ or even ‘!cc:p’ which would have
printed the last command starting with ‘cc’ without executing it.

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still was a bug,
ran the editor again. After fixing the program we ran the C compiler again, but tacked onto the command
an extra ‘−o bug’ telling the compiler to place the resultant binary in the file ‘bug’ rather than ‘a.out’.In
general, the history mechanisms may be used anywhere in the formation of new commands and other char-
acters may be placed before and after the substituted commands.

†The space between the ‘!’ and the word ‘now’ is critical here, as ‘!now’ would be an invocation of thehistory mechanism,
and have a totally different effect.

-- --

USD:4-14 AnIntroduction to the C shell

% cat bug.c
main()

{
printf("hello);

}
% cc !$
cc bug.c
"bug.c", line 4: newline in string or char constant
"bug.c", line 5: syntax error
% ed !$
ed bug.c
29
4s/);/"&/p

printf("hello");
w
30
q
% !c
cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/lo/lo\\n/p

printf("hello\n");
w
32
q
% !c −o bug
cc bug.c −o bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% ls −l ! *
ls −l a.out bug
−rwxr−xr−x 1 bill 3932 Dec 19 09:41 a.out
−rwxr−xr−x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% ˆsppˆssp
num bug.c | ssp

1 main()
3 {
4 printf("hello\n");
5 }

% !! | lpr
num bug.c | ssp | lpr
%

-- --

An Introduction to the C shell USD:4-15

We then ran the ‘size’ command to see how large the binary program images we have created were,
and then an ‘ls −l’ command with the same argument list, denoting the argument list ‘*’. Finally we ran the
program ‘bug’ to see that its output is indeed correct.

To make a numbered listing of the program we ran the ‘num’ command on the file ‘bug.c’. In order
to compress out blank lines in the output of ‘num’ we ran the output through the filter ‘ssp’, but misspelled
it as spp.To correct this we used a shell substitute, placing the old text and new text between ‘ˆ’ characters.
This is similar to the substitute command in the editor. Finally, we repeated the same command with ‘!!’,
but sent its output to the line printer.

There are other mechanisms available for repeating commands.The history command prints out a
number of previous commands with numbers by which they can be referenced.There is a way to refer to a
previous command by searching for a string which appeared in it, and there are other, less useful, ways to
select arguments to include in a new command. Acomplete description of all these mechanisms is given in
the C shell manual pages in theUNIX Programmer’s Manual.

2.4. Aliases

The shell has analias mechanism which can be used to make transformations on input commands.
This mechanism can be used to simplify the commands you type, to supply default arguments to com-
mands, or to perform transformations on commands and their arguments. Thealias facility is similar to a
macro facility. Some of the features obtained by aliasing can be obtained also using shell command files,
but these take place in another instance of the shell and cannot directly affect the current shells environment
or involve commands such ascd which must be done in the current shell.

As an example, suppose that there is a new version of the mail program on the system called ‘new-
mail’ you wish to use, rather than the standard mail program which is called ‘mail’.If you place the shell
command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on ‘newmail’. More generally, suppose we wish the command ‘ls’ to always show sizes of files,
that is to always do ‘−s’. We can do

alias ls ls −s

or even

alias dir ls −s

creating a new command syntax ‘dir’ which does an ‘ls −s’.If we say

dir ˜bill

then the shell will translate this to

ls −s /mnt/bill

Thus thealias mechanism can be used to provide short names for commands, to provide default
arguments, and to define new short commands in terms of other commands.It is also possible to define
aliases which contain multiple commands or pipelines, showing where the arguments to the original com-
mand are to be substituted using the facilities of the history mechanism.Thus the definition

alias cd ´cd \!* ; ls ´

would do anls command after each change directorycd command. We enclosed the entire alias definition
in ‘´’ characters to prevent most substitutions from occurring and the character ‘;’ from being recognized as
a metacharacter. The ‘!’ here is escaped with a ‘\’ to prevent it from being interpreted when the alias com-
mand is typed in.The ‘\!*’ here substitutes the entire argument list to the pre-aliasingcd command, with-
out giving an error if there were no arguments. The‘;’ separating commands is used here to indicate that

-- --

USD:4-16 AnIntroduction to the C shell

one command is to be done and then the next. Similarly the definition

alias whois ´grep \!ˆ /etc/passwd´

defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the.cshrc file each time it starts up.If you place a large number
of commands there, shells will tend to start slowly. A mechanism for saving the shell environment after
reading the.cshrc file and quickly restoring it is under development, but for now you should try to limit the
number of aliases you have to a reasonable number... 10 or 15 is reasonable, 50 or 60 will cause a notice-
able delay in starting up shells, and make the system seem sluggish when you execute commands from
within the editor and other programs.

2.5. More redirection; >> and >&

There are a few more notations useful to the terminal user which have not been introduced yet.

In addition to the standard output, commands also have a diagnostic outputwhich is normally
directed to the terminal even when the standard output is redirected to a file or a pipe.It is occasionally
desirable to direct the diagnostic output along with the standard output.For instance if you want to redirect
the output of a long running command into a file and wish to have a record of any error diagnostic it pro-
duces you can do

command >& file

The ‘>&’ here tells the shell to route both the diagnostic output and the standard output into ‘file’.Simi-
larly you can give the command

command |& l pr

to route both standard and diagnostic output through the pipe to the line printer daemonlpr.‡

Finally, it is possible to use the form

command >> file

to place output at the end of an existing file.†

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands sepa-
rated by semicolons, a singlejob is created by the shell consisting of these commands together as a unit.
Single commands without pipes or semicolons create the simplest jobs.Usually, every line typed to the
shell creates a job. Some lines that create jobs (one per line) are

sort < data
ls −s | sort −n | head −5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is started as abackground
job. This means that the shell does not wait for it to complete but immediately prompts and is ready for
another command.The job runsin the background at the same time that normal jobs, calledforeground
jobs, continue to be read and executed by the shell one at a time.Thus

du > usage &

‡ A command of the form
command >&! file

exists, and is used whennoclobber is set andfile already exists.
† If noclobber is set, then an error will result iffile does not exist, otherwise the shell will createfile if it doesn’t exist. A
form

command >>! file
makes it not be an error for file to not exist whennoclobber is set.

-- --

An Introduction to the C shell USD:4-17

would run thedu program, which reports on the disk usage of your working directory (as well as any direc-
tories below it), put the output into the file ‘usage’ and return immediately with a prompt for the next com-
mand without out waiting for du to finish. The du program would continue executing in the background
until it finished, even though you can type and execute more commands in the mean time.When a back-
ground job terminates, a message is typed by the shell just before the next prompt telling you that the job
has completed.In the following example thedu job finishes sometime during the execution of themail
command and its completion is reported just before the prompt after themail job is finished.

% du > usage &
[1] 503
% mail bill
How do you know when a background job is finished?
EOT
[1] − Done du > usage
%

If the job did not terminate normally the ‘Done’ message might say something else like ‘Killed’. If you
want the terminations of background jobs to be reported at the time they occur (possibly interrupting the
output of other foreground jobs), you can set thenotify variable. Inthe previous example this would mean
that the ‘Done’ message might have come right in the middle of the message to Bill.Background jobs are
unaffected by any signals from the keyboard like theSTOP, INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. Inthis table, the shell remembers
the command names, arguments and theprocess numbers of all commands in the job as well as the work-
ing directory where the job was started.Each job in the table is either runningin the foreground with the
shell waiting for it to terminate, runningin the background, or suspended.Only one job can be running in
the foreground at one time, but several jobs can be suspended or running in the background at once.As
each job is started, it is assigned a small identifying number called thejob numberwhich can be used later
to refer to the job in the commands described below. Job numbers remain the same until the job terminates
and then are re-used.

When a job is started in the backgound using ‘&’, its number, as well as the process numbers of all
its (top level) commands, is typed by the shell before prompting you for another command. For example,

% ls −s | sort −n > usage &
[2] 2034 2035
%

runs the ‘ls’ program with the ‘−s’ options, pipes this output into the ‘sort’ program with the ‘−n’ option
which puts its output into the file ‘usage’.Since the ‘&’ was at the end of the line, these two programs
were started together as a background job. After starting the job, the shell prints the job number in brackets
(2 in this case) followed by the process number of each program started in the job. Then the shell immedi-
ates prompts for a new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs becomesuspendedby typing ˆZ which sends aSTOP

signal to the currently running foreground job. A background job can become suspended by using thestop
command described below. When jobs are suspended they merely stop any further progress until started
again, either in the foreground or the backgound.The shell notices when a job becomes stopped and
reports this fact, much like it reports the termination of background jobs.For foreground jobs this looks
like

% du > usage
ˆZ
Stopped
%

‘Stopped’ message is typed by the shell when it notices that thedu program stopped.For background jobs,
using thestop command, it is

-- --

USD:4-18 AnIntroduction to the C shell

% sort usage &
[1] 2345
% stop %1
[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you are doing
(execute other commands) and then return to the suspended job. Also, foreground jobs can be suspended
and then continued as background jobs using thebg command, allowing you to continue other work and
stop waiting for the foreground job to finish.Thus

% du > usage
ˆZ
Stopped
% bg
[1] du > usage &
%

starts ‘du’ in the foreground, stops it before it finishes, then continues it in the background allowing more
foreground commands to be executed. Thisis especially helpful when a foreground job ends up taking
longer than you expected and you wish you had started it in the backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job name argu-
ments begin with the character ‘%’, since some of the job control commands also accept process numbers
(printed by theps command.) Thedefault job (when no argument is given) is called thecurrent job and is
identified by a ‘+’ in the output of thejobs command, which shows you which jobs you have. When only
one job is stopped or running in the background (the usual case) it is always the current job thus no argu-
ment is needed.If a job is stopped while running in the foreground it becomes thecurrent job and the
existing current job becomes theprevious job − identified by a ‘−’ in the output ofjobs. When the current
job terminates, the previous job becomes the current job. When given, the argument is either ‘%−’ (indicat-
ing the previous job); ‘%#’, where # is the job number; ‘%pref’ where pref is some unique prefix of the
command name and arguments of one of the jobs; or ‘%?’ followed by some string found in only one of the
jobs.

The jobs command types the table of jobs, giving the job number, commands and status (‘Stopped’
or ‘Running’) of each backgound or suspended job. With the ‘−l’ option the process numbers are also
typed.

% du > usage &
[1] 3398
% ls −s | sort −n > myfile &
[2] 3405
% mail bill
ˆZ
Stopped
% jobs
[1] − Running du> usage
[2] Running ls −s | sort −n > myfile
[3] + Stopped mailbill
% fg %ls
ls −s | sort −n > myfile
% more myfile

The fg command runs a suspended or background job in the foreground. Itis used to restart a previ-
ously suspended job or change a background job to run in the foreground (allowing signals or input from
the terminal). In the above example we usedfg to change the ‘ls’ job from the background to the fore-
ground since we wanted to wait for it to finish before looking at its output file.The bg command runs a
suspended job in the background.It is usually used after stopping the currently running foreground job

-- --

An Introduction to the C shell USD:4-19

with theSTOP signal. Thecombination of theSTOP signal and thebg command changes a foreground job
into a background job. Thestop command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition to jobs, it
may be given process numbers as arguments, as printed byps. Thus, in the example above, the runningdu
command could have been terminated by the command

% kill %1
[1] Terminated du> usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of a specific
job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically stopped.
When such a job is then run in the foreground, input can be given to the job. If desired, the job can be run
in the background again until it requests input again. Thisis illustrated in the following sequence where the
‘s’ command in the text editor might take a long time.

% ed bigfile
120000
1,$s/thisword/thatword/
ˆZ
Stopped
% bg
[1] ed bigfile &
%
. . . some foreground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000
q
%

So after the ‘s’ command was issued, the ‘ed’ job was stopped with ˆZ and then put in the background
usingbg. Some time later when the ‘s’ command was finished,ed tried to read another command and was
stopped because jobs in the backgound cannot read from the terminal.The fg command returned the ‘ed’
job to the foreground where it could once again accept commands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the terminal.
This prevents messages from background jobs from interrupting foreground job output and allows you to
run a job in the background without losing terminal output.It also can be used for interactive programs that
sometimes have long periods without interaction.Thus each time it outputs a prompt for more input it will
stop before the prompt.It can then be run in the foreground usingfg, more input can be given and, if nec-
essary stopped and returned to the background.This stty command might be a good thing to put in your
.login file if you do not like output from background jobs interrupting your work. It also can reduce the
need for redirecting the output of background jobs if the output is not very big:

-- --

USD:4-20 AnIntroduction to the C shell

% stty tostop
% wc hugefile &
[1] 10387
% ed text
. . . some time later
q
[1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile

13371 30123 302577
% stty −tostop

Thus after some time the ‘wc’ command, which counts the lines, words and characters in a file, had one
line of output. When it tried to write this to the terminal it stopped.By restarting it in the foreground we
allowed it to write on the terminal exactly when we were ready to look at its output.Programs which
attempt to change the mode of the terminal will also block, whether or nottostop is set, when they are not
in the foreground, as it would be very unpleasant to have a background job change the state of the terminal.

Since thejobs command only prints jobs started in the currently executing shell, it knows nothing
about background jobs started in other login sessions or within shell files.Theps can be used in this case
to find out about background jobs not started in the current shell.

2.7. Working Dir ectories

As mentioned in section 1.6, the shell is always in a particularworking directory. The ‘change direc-
tory’ commandchdir (its short formcd may also be used) changes the working directory of the shell, that
is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related to
that project in that directory. The ‘make directory’ command,mkdir, creates a new directory. The pwd
(‘print working directory’) command reports the absolute pathname of the working directory of the shell,
that is, the directory you are located in.Thus in the example below:

% pwd
/usr/bill
% mkdir newpaper
% chdir newpaper
% pwd
/usr/bill/newpaper
%

the user has created and moved to the directorynewpaper. where, for example, he might place a group of
related files.

No matter where you have moved to in a directory hierarchy, you can return to your ‘home’ login
directory by doing just

cd

with no arguments. Thename ‘..’ always means the directory above the current one in the hierarchy, thus

cd ..

changes the shell’s working directory to the one directly above the current one.The name ‘..’ can be used
in any pathname, thus,

cd ../programs

means change to the directory ‘programs’ contained in the directory above the current one.If you have
several directories for different projects under, say, your home directory, this shorthand notation permits
you to switch easily between them.

-- --

An Introduction to the C shell USD:4-21

The shell always remembers the pathname of its current working directory in the variablecwd. The
shell can also be requested to remember the previous directory when you change to a new working direc-
tory. If the ‘push directory’ commandpushd is used in place of thecd command, the shell saves the name
of the current working directory on adirectory stack before changing to the new one. You can see this list
at any time by typing the ‘directories’ commanddirs.

% pushd newpaper/references
˜/newpaper/references ˜
% pushd /usr/lib/tmac
/usr/lib/tmac ˜/newpaper/references ˜
% dirs
/usr/lib/tmac ˜/newpaper/references ˜
% popd
˜/newpaper/references ˜
% popd
˜
%

The list is printed in a horizontal line, reading left to right, with a tilde (˜) as shorthand for your home direc-
tory—in this case ‘/usr/bill’.The directory stack is printed whenever there is more than one entry on it and
it changes.It is also printed by adirs command.Dirs is usually faster and more informative thanpwd
since it shows the current working directory as well as any other directories remembered in the stack.

Thepushdcommand with no argument alternates the current directory with the first directory in the
list. The ‘pop directory’ popd command without an argument returns you to the directory you were in
prior to the current one, discarding the previous current directory from the stack (forgetting it). Typing
popd several times in a series takes you backward through the directories you had been in (changed to) by
pushd command. Thereare other options topushd andpopd to manipulate the contents of the directory
stack and to change to directories not at the top of the stack; see thecsh manual page for details.

Since the shell remembers the working directory in which each job was started, it warns you when
you might be confused by restarting a job in the foreground which has a different working directory than
the current working directory of the shell.Thus if you start a background job, then change the shell’s work-
ing directory and then cause the background job to run in the foreground, the shell warns you that the work-
ing directory of the currently running foreground job is different from that of the shell.

% dirs −l
/mnt/bill
% cd myproject
% dirs
˜/myproject
% ed prog.c
1143
ˆZ
Stopped
% cd ..
% ls
myproject
textfile
% fg
ed prog.c (wd: ˜/myproject)

This way the shell warns you when there is an implied change of working directory, even though no cd
command was issued.In the above example the ‘ed’ job was still in ‘/mnt/bill/project’ even though the
shell had changed to ‘/mnt/bill’.A similar warning is given when such a foreground job terminates or is
suspended (using theSTOPsignal) since the return to the shell again implies a change of working directory.

-- --

USD:4-22 AnIntroduction to the C shell

% fg
ed prog.c (wd: ˜/myproject)
. . . after some editing
q
(wd now: ˜)
%

These messages are sometimes confusing if you use programs that change their own working directories,
since the shell only remembers which directory a job is started in, and assumes it stays there.The ‘−l’
option of jobs will type the working directory of suspended or background jobs when it is different from
the current working directory of the shell.

2.8. Usefulbuilt-in commands

We now giv e a few of the useful built-in commands of the shell describing how they are used.

The alias command described above is used to assign new aliases and to show the existing aliases.
With no arguments it prints the current aliases.It may also be given only one argument such as

alias ls

to show the current alias for, e.g., ‘ls’.

The echo command prints its arguments. Itis often used inshell scriptsor as an interactive com-
mand to see what filename expansions will produce.

Thehistory command will show the contents of the history list.The numbers given with the history
ev ents can be used to reference previous events which are difficult to reference using the contextual mecha-
nisms introduced above. There is also a shell variable calledprompt. By placing a ‘!’ character in its value
the shell will there substitute the number of the current command in the history list.You can use this num-
ber to refer to this command in a history substitution.Thus you could

set prompt=´\! % ´

Note that the ‘!’ character had to beescapedhere even within ‘´’ characters.

The limit command is used to restrict use of resources.With no arguments it prints the current limi-
tations:

cputime unlimited
filesize unlimited
datasize 5616kbytes
stacksize 512kbytes
coredumpsize unlimited

Limits can be set, e.g.:

limit coredumpsize 128k

Most reasonable units abbreviations will work; see thecsh manual page for more details.

The logout command can be used to terminate a login shell which hasignoreeofset.

The rehash command causes the shell to recompute a table of where commands are located.This is
necessary if you add a command to a directory in the current shell’s search path and wish the shell to find it,
since otherwise the hashing algorithm may tell the shell that the command wasn’t in that directory when the
hash table was computed.

The repeat command can be used to repeat a command several times. Thus to make 5 copies of the
file one in the filefive you could do

repeat 5 cat one >> five

Thesetenv command can be used to set variables in the environment. Thus

-- --

An Introduction to the C shell USD:4-23

setenv TERM adm3a

will set the value of the environment variableTERM to ‘adm3a’. A user programprintenv exists which will
print out the environment. Itmight then show:

% printenv
HOME=/usr/bill
SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a
USER=bill
%

Thesource command can be used to force the current shell to read commands from a file.Thus

source .cshrc

can be used after editing in a change to the.cshrc file which you wish to take effect right away.

The time command can be used to cause a command to be timed no matter how much CPU time it
takes. Thus

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8% 2+1k 3+2io 1pf+0w
% time wc /etc/rc /usr/bill/rc

52 178 1347 /etc/rc
52 178 1347 /usr/bill/rc
104 356 2694 total

0.1u 0.1s 0:00 13% 3+3k 5+3io 7pf+0w
%

indicates that thecp command used a negligible amount of user time (u) and about 1/10th of a system time
(s); the elapsed time was 1 second (0:01), there was an average memory usage of 2k bytes of program space
and 1k bytes of data space over the cpu time involved (2+1k); the program did three disk reads and two disk
writes (3+2io), and took one page fault and was not swapped (1pf+0w).The word count commandwc on
the other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a second of
elapsed time.The percentage ‘13%’ indicates that over the period when it was active the command ‘wc’
used an average of 13 percent of the available CPUcycles of the machine.

The unalias andunset commands can be used to remove aliases and variable definitions from the
shell, andunsetenv removes variables from the environment.

2.9. Whatelse?

This concludes the basic discussion of the shell for terminal users.There are more features of the
shell to be discussed here, and all features of the shell are discussed in its manual pages.One useful feature
which is discussed later is theforeach built-in command which can be used to run the same command
sequence with a number of different arguments.

If you intend to useUNIX a lot you you should look through the rest of this document and the csh
manual pages (section1) to become familiar with the other facilities which are available to you.

-- --

USD:4-24 AnIntroduction to the C shell

3. Shellcontrol structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and execute com-
mands from these files, which are calledshell scripts.We here detail those features of the shell useful to
the writers of such scripts.

3.2. Make

It is important to first note what shell scripts arenot useful for. There is a program calledmake
which is very useful for maintaining a group of related files or performing sets of operations on related
files. For instance a large program consisting of one or more files can have its dependencies described in a
makefile which contains definitions of the commands used to create these different files when changes
occur. Definitions of the means for printing listings, cleaning up the directory in which the files reside, and
installing the resultant programs are easily, and most appropriately placed in thismakefile. This format is
superior and preferable to maintaining a group of shell procedures to maintain these files.

Similarly when working on a document amakefile may be created which defines how different ver-
sions of the document are to be created and which options ofnroff or troff are appropriate.

3.3. Invocation and the argv variable

A csh command script may be interpreted by saying

% csh script ...

wherescript is the name of the file containing a group ofcsh commands and ‘...’ i s replaced by a sequence
of arguments. Theshell places these arguments in the variableargv and then begins to read commands
from the script.These parameters are then available through the same mechanisms which are used to refer-
ence any other shell variables.

If you make the file ‘script’ executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a ‘#’ character) then a
‘/bin/csh’ will automatically be invoked to execute ‘script’ when you type

script

If the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute it. This allows
you to convert your older shell scripts to usecsh at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the input line is
parsed into distinct commands.Before each command is executed a mechanism know as variable substitu-
tion is done on these words. Keyed by the character ‘$’ this substitution replaces the names of variables by
their values. Thus

echo $argv

when placed in a command script would cause the current value of the variableargv to be echoed to the
output of the shell script.It is an error forargv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables. Thenota-
tion

$?name

expands to ‘1’ if name isset or to ‘0’ if name is notset. It is the fundamental mechanism used for checking
whether particular variables have been assigned values. Allother forms of reference to undefined variables
cause errors.

-- --

An Introduction to the C shell USD:4-25

The notation

$#name

expands to the number of elements in the variablename. Thus

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
0
% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

$argv[1]

gives the first component ofargv or in the example above ‘a’. Similarly

$argv[$#argv]

would give ‘c’, and

$argv[1−2]

would give ‘a b’. Other notations useful in shell scripts are

$n

wheren is an integer as a shorthand for

$argv[n]

then th parameter and

$*

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell.Since this process number is unique in the system it can
be used in generation of unique temporary file names.The form

$<

is quite special and is replaced by the next line of input read from the shell’s standard input (not the script it
is reading).This is useful for writing shell scripts that are interactive, reading commands from the terminal,
or even writing a shell script that acts as a filter, reading lines from its input file. Thus the sequence

echo ’yes or no?\c’
set a=($<)

would write out the prompt ‘yes or no?’ without a newline and then read the answer into the variable ‘a’.
In this case ‘$#a’ would be ‘0’ if either a blank line or end-of-file (ˆD) was typed.

One minor difference between ‘$n ’ and ‘$argv[n]’ should be noted here.The form ‘$argv[n]’ will
yield an error ifn is not in the range ‘1−$#argv’ while ‘$n’ will never yield an out of range subscript error.

-- --

USD:4-26 AnIntroduction to the C shell

This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form ‘n−’; if there are
less thann components of the given variable then no words are substituted.A range of the form ‘m−n’
likewise returns an empty vector without giving an error whenm exceeds the number of elements of the
given variable, provided the subscriptn is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate expressions in
the shell based on the values of variables. Infact, all the arithmetic operations of the language C are avail-
able in the shell with the same precedence that they hav ein C. In particular, the operations ‘==’ and ‘!=’
compare strings and the operators ‘&&’ and ‘||’ implement the boolean and/or operations.The special
operators ‘=˜’ and ‘!˜’ are similar to ‘==’ and ‘!=’ except that the string on the right side can have pattern
matching characters (like *, ? or []) and the test is whether the string on the left matches the pattern on the
right.

The shell also allows file enquiries of the form

−? filename

where ‘?’ is replace by a number of single characters.For instance the expression primitive

−e filename

tell whether the file ‘filename’ exists. Otherprimitives test for read, write and execute access to the file,
whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ‘{ command
}’ which returns true, i.e. ‘1’ if the command succeeds exiting normally with exit status 0, or ‘0’ if the com-
mand terminates abnormally or with exit status non-zero.If more detailed information about the execution
status of a command is required, it can be executed and the variable ‘$status’ examined in the next com-
mand. Since‘$status’ is set by every command, it is very transient.It can be saved if i t is inconvenient to
use it only in the single immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sampleshell script

A sample shell script which makes use of the expression mechanism of the shell and some of its con-
trol structure follows:

-- --

An Introduction to the C shell USD:4-27

% cat copyc
#
Copyc copies those C programs in the specified list
to the directory ˜/backup if they differ from the files
already in ˜/backup
#
set noglob
foreach i ($argv)

if ($i !˜ *.c) continue # not a .c file so do nothing

if (! −r ˜/backup/$i:t) then
echo $i:t not in backup... not cp\´ed
continue

endif

cmp −s $i ˜/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i ˜/backup/$i:t

endif
end

This script makes use of theforeach command, which causes the shell to execute the commands
between theforeach and the matchingend for each of the values given between ‘(’ and ‘)’ with the named
variable, in this case ‘i’ set to successive values in the list.Within this loop we may use the command
break to stop executing the loop andcontinue to prematurely terminate one iteration and begin the next.
After theforeach loop the iteration variable (i in this case) has the value at the last iteration.

We set the variablenoglob here to prevent filename expansion of the members ofargv. This is a
good idea, in general, if the arguments to a shell script are filenames which have already been expanded or
if the arguments may contain filename expansion metacharacters.It is also possible to quote each use of a
‘$’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression)then
command
...

endif

The placement of the keywords here isnot flexible due to the current implementation of the shell.†

The shell does have another form of the if statement of the form

†The following two formats are not currently acceptable to the shell:

if (expression) # Won’t work!
then

command
...

endif

and

if (expression)then commandendif # Won’t work

-- --

USD:4-28 AnIntroduction to the C shell

if (expression)command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. Thecommand must not involve ‘ | ’, ‘&’ or
‘;’ and must not be another control command.The second form requires the final ‘\’ toimmediately pre-
cede the end-of-line.

The more generalif statements above also admit a sequence ofelse−if pairs followed by a single
elseand anendif, e.g.:

if (expression)then
commands

else if(expression)then
commands

...

else
commands

endif

Another important mechanism used in shell scripts is the ‘:’ modifier. We can use the modifier ‘:r’
here to extract a root of a filename or ‘:e’ to extract theextension. Thus if the variable i has the value
‘/mnt/foo.bar’ then

% echo $i $i:r $i:e
/mnt/foo.bar /mnt/foo bar
%

shows how the ‘:r’ modifier strips off the trailing ‘.bar’ and the the ‘:e’ modifier leaves only the ‘bar’.
Other modifiers will take off the last component of a pathname leaving the head ‘:h’ or all but the last com-
ponent of a pathname leaving the tail ‘:t’. These modifiers are fully described in thecsh manual pages in
the User’s Reference Manual.It is also possible to use thecommand substitutionmechanism described in
the next major section to perform modifications on strings to then reenter the shell’s environment. Since
each usage of this mechanism involves the creation of a new process, it is much more expensive to use than
the ‘:’ modification mechanism.‡ Finally, we note that the character ‘#’ lexically introduces a shell com-
ment in shell scripts (but not from the terminal).All subsequent characters on the input line after a ‘#’ are
discarded by the shell.This character can be quoted using ‘´’ or ‘\’ to place it in an argument word.

3.7. Othercontrol structures

The shell also has control structureswhile andswitch similar to those of C.These take the forms

while (expression)
commands

end

‡ It is also important to note that the current implementation of the shell limits the number of ‘:’ modifiers on a ‘$’ substitu-
tion to 1. Thus

% echo $i $i:h:t
/a/b/c /a/b:t
%

does not do what one would expect.

-- --

An Introduction to the C shell USD:4-29

and

switch (word)

casestr1:
commands
breaksw

...

casestrn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section forcsh. C programmers should note that we usebreakswto exit from a
switch while break exits a while or foreach loop. A common mistake to make in csh scripts is to use
break rather thanbreakswin switches.

Finally, csh allows agoto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplyinginput to commands

Commands run from shell scripts receive by default the standard input of the shell which is running
the script.This is different from previous shells running underUNIX . It allows shell scripts to fully partici-
pate in pipelines, but mandates extra notation for commands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts.As an example,
consider this script which runs the editor to delete leading blanks from the lines in each argument file:

% cat deblank
deblank −− remove leading blanks
foreach i ($argv)
ed − $i << ´EOF´
1,$s/ˆ[]*//
w
q
´EOF´
end
%

The notation ‘<< ´EOF´’ means that the standard input for theed command is to come from the text in the
shell script file up to the next line consisting of exactly ‘´EOF´’. The fact that the ‘EOF’ is enclosed in ‘´’
characters, i.e. quoted, causes the shell to not perform variable substitution on the intervening lines.In gen-
eral, if any part of the word following the ‘<<’ which the shell uses to terminate the text to be given to the
command is quoted then these substitutions will not be performed.In this case since we used the form
‘1,$’ in our editor script we needed to insure that this ‘$’ was not variable substituted.We could also have
insured this by preceding the ‘$’ here with a ‘\’, i.e.:

-- --

USD:4-30 AnIntroduction to the C shell

1,\$s/ˆ[]*//

but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

3.9. Catchinginterrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script so
that we can clean up these files.We can then do

onintr label

wherelabel is a label in our program.If an interrupt is received the shell will do a ‘goto label’ and we can
remove the temporary files and then do anexit command (which is built in to the shell) to exit from the
shell script. If we wish to exit with a non-zero status we can do

exit(1)

e.g. to exit with status ‘1’.

3.10. Whatelse?

There are other features of the shell useful to writers of shell procedures.The verboseand echo
options and the related−v and−x command line options can be used to help trace the actions of the shell.
The−n option causes the shell only to read commands and not to execute them and may sometimes be of
use.

One other thing to note is thatcsh will not execute shell scripts which do not begin with the character
‘#’, that is shell scripts that do not begin with a comment.Similarly, the ‘/bin/sh’ on your system may well
defer to ‘csh’ to interpret shell scripts which begin with ‘#’. This allows shell scripts for both shells to live
in harmony.

There is also another quotation mechanism using ‘"’ which allows only some of the expansion mech-
anisms we have so far discussed to occur on the quoted string and serves to make this string into a single
word as ‘´’ does.

-- --

An Introduction to the C shell USD:4-31

4. Other, less commonly used, shell features

4.1. Loopsat the terminal; variables as vectors

It is occasionally useful to use theforeach control structure at the terminal to aid in performing a
number of similar commands.For instance, there were at one point three shells in use on the CoryUNIX

system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’.To count the number of persons using each shell
one could have issued the commands

% grep −c csh$ /etc/passwd
27
% grep −c nsh$ /etc/passwd
128
% grep −c −v sh$ /etc/passwd
430
%

Since these commands are very similar we can useforeach to do this more easily.

% foreach i (´sh$´ ´csh$´ ´−v sh$´)
? grep −c $i /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with ‘? ’ when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You can, for
example, do

% set a=(`ls`)
% echo $a
csh.n csh.rm
% ls
csh.n
csh.rm
% echo $#a
2
%

Theset command here gav ethe variablea a list of all the filenames in the current directory as value. We
can then iterate over these names to perform any chosen function.

The output of a command within ‘`’ characters is converted by the shell to a list of words. You can
also place the ‘`’ quoted string within ‘"’ characters to take each (non-empty) line as a component of the
variable; preventing the lines from being split into words at blanks and tabs.A modifier ‘:x’ exists which
can be used later to expand each component of the variable into another variable splitting it into separate
words at embedded blanks and tabs.

4.2. Braces{ ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{’ and ‘}’.These
characters specify that the contained strings, separated by ‘,’ are to be consecutively substituted into the
containing characters and the results expanded left to right.Thus

A{str1,str2,...strn}B

expands to

-- --

USD:4-32 AnIntroduction to the C shell

Astr1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e. nested).
The results of each expanded string are sorted separately, left to right order being preserved. Theresulting
filenames are not required to exist if no other expansion mechanisms are used.This means that this mecha-
nism can be used to generate arguments which are not filenames, but which have common parts.

A typical use of this would be

mkdir ˜/{hdrs,retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is most useful
when the common prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

4.3. Commandsubstitution

A command enclosed in ‘`’ characters is replaced, just before filenames are expanded, by the output
from that command.Thus it is possible to do

set pwd=`pwd`

to save the current directory in the variablepwd or to do

ex g̀rep −l TRACE *.c`

to run the editorex supplying as arguments those files whose names end in ‘.c’ which have the string
‘TRACE’ in them.*

4.4. Otherdetails not covered here

In particular circumstances it may be necessary to know the exact nature and order of different sub-
stitutions performed by the shell.The exact meaning of certain combinations of quotations is also occa-
sionally important.These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writingUNIX programs, and
debugging shell scripts.See the csh(1) manual section for a list of these options.

*Command expansion also occurs in input redirected with ‘<<’ and within ‘"’ quotations.Refer to the shell manual section
for full details.

-- --

An Introduction to the C shell USD:4-33

Appendix − Special characters

The following table lists the special characters ofcsh and theUNIX system, giving for each the section(s) in
which it is discussed.A number of these characters also have special meaning in expressions. Seethecsh
manual section for a complete list.

Syntactic metacharacters

; 2.4 separatescommands to be executed sequentially
| 1.5 separatescommands in a pipeline
() 2.2,3.6 brackets expressions and variable values
& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

/ 1.6 separatescomponents of a file’s pathname
? 1.6 expansion character matching any single character
* 1.6 expansion character matching any sequence of characters
[] 1.6 expansion sequence matching any single character from a set
˜ 1.6 usedat the beginning of a filename to indicate home directories
{ } 4 .2 usedto specify groups of arguments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character
´ 1.7 prevents meta-meaning of a group of characters
" 4.3 like ,́ but allows variable and command expansion

Input/output metacharacters

< 1.5 indicatesredirected input
> 1.3 indicatesredirected output

Expansion/substitution metacharacters

$ 3.4 indicatesvariable substitution
! 2.3 indicateshistory substitution
: 3.6 precedessubstitution modifiers
ˆ 2.3 usedin special forms of history substitution
` 4.3 indicatescommand substitution

Other metacharacters

1.3,3.6 begins scratch file names; indicates shell comments
− 1.2 prefixes option (flag) arguments to commands
% 2.6 prefixes job name specifications

-- --

USD:4-34 AnIntroduction to the C shell

Glossary

This glossary lists the most important terms introduced in the introduction to the shell and gives ref-
erences to sections of the shell document for further information about them.References of the form ‘pr
(1)’ indicate that the commandpr is in theUNIX User Reference manual in section 1.You can look at an
online copy of i ts manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this manual.

. Your current directory has the name ‘.’ as well as the name printed by the command
pwd; see alsodirs. The current directory ‘.’ i s usually the firstcomponentof the search
path contained in the variablepath, thus commands which are in ‘.’ are found first (2.2).
The character ‘.’ i s also used in separatingcomponentsof filenames (1.6).The character
‘.’ at the beginning of acomponentof a pathnameis treated specially and not matched
by thefilename expansionmetacharacters ‘?’, ‘*’, and ‘[’ ‘]’ pairs (1.6).

.. Each directory has a file ‘..’ i n it which is a reference to its parent directory. After
changing into the directory withchdir , i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed bypwd (2.7).

a.out Compilerswhich create executable images create them, by default, in the filea.out. for
historical reasons (2.3).

absolute pathname
A pathnamewhich begins with a ‘/’ isabsolutesince it specifies thepath of directories
from the beginning of the entire directory system − called theroot directory. Pathnames
which are notabsoluteare calledrelative (see definition ofrelative pathname) (1.6).

alias Analias specifies a shorter or different name for aUNIX command, or a transformation
on a command to be performed in the shell.The shell has a commandalias which
establishesaliases and can print their current values. Thecommandunalias is used to
removealiases(2.4).

argument Commandsin UNIX receive a list of argumentwords. Thusthe command

echo a b c

consists of thecommand name‘echo’ and threeargumentwords ‘a’, ‘b’ and ‘c’. The
set ofargumentsafter thecommand nameis said to be theargument listof the com-
mand (1.1).

argv Thelist of arguments to a command written in the shell language (a shell script or shell
procedure) is stored in a variable calledargv within the shell. This name is taken from
the conventional name in the C programming language (3.4).

background Commandsstarted without waiting for them to complete are calledbackground com-
mands (2.6).

base Afilename is sometimes thought of as consisting of abasepart, before any ‘ .’ character,
and anextension− the part after the ‘.’. Seefilenameandextension(1.6) and basename
(1).

bg The bg command causes asuspendedjob to continue execution in thebackground
(2.6).

bin A directory containing binaries of programs and shell scripts to be executed is typically
called abin directory. The standard systembin directories are ‘/bin’ containing the
most heavily used commands and ‘/usr/bin’ which contains most other user programs.

-- --

An Introduction to the C shell USD:4-35

Programs developed at UC Berkeley liv e in ‘/usr/ucb’, while locally written programs
live in ‘/usr/local’. Gamesare kept in the directory ‘/usr/games’. You can place binaries
in any directory. If you wish to execute them often, the name of the directories should be
acomponentof the variablepath.

break Break is a builtin command used to exit from loops within the control structure of the
shell (3.7).

breaksw Thebreaksw builtin command is used to exit from a switch control structure, like a
break exits from loops (3.7).

builtin A command executed directly by the shell is called abuiltin command. Mostcommands
in UNIX are not built into the shell, but rather exist as files inbin directories. Thesecom-
mands are accessible because the directories in which they reside are named in thepath
variable.

case Acasecommand is used as a label in aswitch statement in the shell’s control structure,
similar to that of the language C.Details are given in the shell documentation ‘csh (1)’
(3.7).

cat Thecat program catenates a list of specified files on thestandard output. It is usually
used to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8, 2.3).

cd Thecd command is used to change theworking directory. With no arguments,cd
changes yourworking directory to be yourhomedirectory (2.4, 2.7).

chdir Thechdir command is a synonym for cd. Cd is usually used because it is easier to
type.

chsh Thechsh command is used to change the shell which you use onUNIX . By default, you
use an different version of the shell which resides in ‘/bin/sh’.You can change your
shell to ‘/bin/csh’ by doing

chsh your-login-name /bin/csh

Thus I would do

chsh bill /bin/csh

It is only necessary to do this once.The next time you log in toUNIX after doing this
command, you will be usingcsh rather than the shell in ‘/bin/sh’ (1.9).

cmp Cmp is a program which compares files.It is usually used on binary files, or to see if
two files are identical (3.6).For comparing text files the programdiff , described in ‘diff
(1)’ is used.

command Afunction performed by the system, either by the shell (a builtin command) or by a pro-
gram residing in a file in a directory within theUNIX system, is called acommand(1.1).

command name
When a command is issued, it consists of acommand name, which is the first word of
the command, followed by arguments. Theconvention onUNIX is that the first word of a
command names the function to be performed (1.1).

command substitution
The replacement of a command enclosed in ‘`’ characters by the text output by that com-
mand is calledcommand substitution(4.3).

component Apart of apathnamebetween ‘/’ characters is called acomponentof thatpathname. A
variable which has multiple strings as value is said to have sev eral components; each
string is acomponentof the variable.

continue Abuiltin command which causes execution of the enclosingforeach or while loop to
cycle prematurely. Similar to thecontinue command in the programming language C
(3.6).

-- --

USD:4-36 AnIntroduction to the C shell

control- Certainspecial characters, calledcontrol characters, are produced by holding down the
CONTROL key on your terminal and simultaneously pressing another character, much like
the SHIFT key is used to produce upper case characters. Thuscontrol- c is produced by
holding down theCONTROL key while pressing the ‘c’ key. UsuallyUNIX prints an caret
(ˆ) followed by the corresponding letter when you type acontrol character (e.g. ‘ˆC’ for
control- c (1.8).

core dump When a program terminates abnormally, the system places an image of its current state
in a file named ‘core’.This core dump can be examined with the system debugger ‘adb
(1)’ or ‘sdb (1)’ in order to determine what went wrong with the program (1.8).If the
shell produces a message of the form

Illegal instruction (core dumped)

(where ‘Illegal instruction’ is only one of several possible messages), you should report
this to the author of the program or a system administrator, saving the ‘core’ file.

cp Thecp (copy) program is used to copy the contents of one file into another file.It is one
of the most commonly usedUNIX commands (1.6).

csh Thename of the shell program that this document describes.

.cshrc Thefile .cshrc in your homedirectory is read by each shell as it begins execution. It is
usually used to change the setting of the variablepath and to setalias parameters which
are to take effect globally (2.1).

cwd The cwd variable in the shell holds theabsolute pathnameof the currentworking
directory. It is changed by the shell whenever your currentworking directory changes
and should not be changed otherwise (2.2).

date Thedate command prints the current date and time (1.3).

debugging Debugging is the process of correcting mistakes in programs and shell scripts.The shell
has several options and variables which may be used to aid in shelldebugging (4.4).

default: Thelabel default: is used within shellswitch statements, as it is in the C language to
label the code to be executed if none of thecase labels matches the value switched on
(3.7).

DELETE TheDELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job. Many users change the interrupt character to be ˆC.

detached Acommand that continues running in thebackground after you logout is said to be
detached.

diagnostic Anerror message produced by a program is often referred to as adiagnostic. Most error
messages are not written to thestandard output, since that is often directed away from
the terminal (1.3, 1.5).Error messsages are instead written to thediagnostic output
which may be directed away from the terminal, but usually is not.Thusdiagnosticswill
usually appear on the terminal (2.5).

directory Astructure which contains files.At any time you are in one particulardirectory whose
names can be printed by the commandpwd. The chdir command will change you to
anotherdirectory, and make the files in thatdirectory visible. Thedirectory in which
you are when you first login is yourhomedirectory (1.1, 2.7).

directory stack The shell saves the names of previous working directories in the directory stack when
you change your currentworking directory via the pushd command. Thedirectory
stack can be printed by using thedirs command, which includes your currentworking
directory as the first directory name on the left (2.7).

dirs Thedirs command prints the shell’s directory stack (2.7).

du Thedu command is a program (described in ‘du (1)’) which prints the number of disk
blocks is all directories below and including your currentworking directory (2.6).

-- --

An Introduction to the C shell USD:4-37

echo Theecho command prints its arguments (1.6, 3.6).

else Theelsecommand is part of the ‘if-then-else-endif’ control command construct (3.6).

endif If an if statement is ended with the word then, all lines following theif up to a line start-
ing with the word endif or else are executed if the condition between parentheses after
the if is true (3.6).

EOF An end-of-file is generated by the terminal by a control-d, and whenever a command
reads to the end of a file which it has been given as input. Commandsreceiving input
from a pipe receive an end-of-file when the command sending them input completes.
Most commands terminate when they receive an end-of-file . The shell has an option to
ignoreend-of-file from a terminal input which may help you keep from logging out acci-
dentally by typing too many control-d’s (1.1, 1.8, 3.8).

escape Acharacter ‘\’ used to prevent the special meaning of a metacharacter is said toescape
the character from its special meaning.Thus

echo *

will echo the character ‘*’ while just

echo *

will echo the names of the file in the current directory. In this example, \escapes ‘*’
(1.7). Thereis also a non-printing character calledescape, usually labelledESC or ALT-

MODE on terminal keyboards. Someolder UNIX systems use this character to indicate
that output is to besuspended. Most systems use control-s to stop the output and con-
trol-q to start it.

/etc/passwd Thisfile contains information about the accounts currently on the system.It consists of
a line for each account with fields separated by ‘:’ characters (1.8).You can look at this
file by saying

cat /etc/passwd

The commandsfinger andgrep are often used to search for information in this file.See
‘finger (1)’, ‘passwd(5)’, and ‘grep (1)’ for more details.

exit Theexit command is used to force termination of a shell script, and is built into the shell
(3.9).

exit status A command which discovers a problem may reflect this back to the command (such as a
shell) which invoked (executed) it. It does this by returning a non-zero number as itsexit
status, a status of zero being considered ‘normal termination’.The exit command can
be used to force a shell command script to give a non-zeroexit status (3.6).

expansion Thereplacement of strings in the shell input which contain metacharacters by other
strings is referred to as the process ofexpansion. Thus the replacement of the word ‘*’
by a sorted list of files in the current directory is a ‘filename expansion’. Similarlythe
replacement of the characters ‘!!’ by the text of the last command is a ‘history expan-
sion’. Expansionsare also referred to assubstitutions(1.6, 3.4, 4.2).

expressions Expressionsare used in the shell to control the conditional structures used in the writing
of shell scripts and in calculating values for these scripts.The operators available in
shellexpressionsare those of the language C (3.5).

extension Filenamesoften consist of abasename and anextensionseparated by the character ‘.’.
By convention, groups of related files often share the sameroot name. Thusif ‘prog.c’
were a C program, then the object file for this program would be stored in ‘prog.o’.
Similarly a paper written with the ‘−me’ nroff macro package might be stored in
‘paper.me’ while a formatted version of this paper might be kept in ‘paper.out’ and a list
of spelling errors in ‘paper.errs’ (1.6).

-- --

USD:4-38 AnIntroduction to the C shell

fg The job control commandfg is used to run abackground or suspendedjob in thefore-
ground (1.8, 2.6).

filename Eachfile in UNIX has a name consisting of up to 14 characters and not including the
character ‘/’ which is used inpathnamebuilding. Mostfilenamesdo not begin with the
character ‘.’, and contain only letters and digits with perhaps a ‘.’ separating thebase
portion of thefilenamefrom anextension(1.6).

filename expansion
Filename expansion uses the metacharacters ‘*’, ‘?’ and ‘[’ and ‘]’ to provide a con-
venient mechanism for naming files.Usingfilename expansionit is easy to name all the
files in the current directory, or all files which have a commonroot name. Otherfilename
expansion mechanisms use the metacharacter ‘˜’ and allow files in other users’ directo-
ries to be named easily (1.6, 4.2).

flag Many UNIX commands accept arguments which are not the names of files or other users
but are used to modify the action of the commands.These are referred to asflag
options, and by convention consist of one or more letters preceded by the character ‘−’
(1.2). Thusthe ls (list files) command has an option ‘−s’ to list the sizes of files.This is
specified

ls −s

foreach Theforeach command is used in shell scripts and at the terminal to specify repetition of
a sequence of commands while the value of a certain shell variable ranges through a
specified list (3.6, 4.1).

foreground Whencommands are executing in the normal way such that the shell is waiting for them
to finish before prompting for another command they are said to beforeground jobsor
running in the foreground. This is as opposed tobackground. Foreground jobs can be
stopped by signals from the terminal caused by typing different control characters at the
keyboard (1.8, 2.6).

goto Theshell has a commandgoto used in shell scripts to transfer control to a given label
(3.7).

grep Thegrep command searches through a list of argument files for a specified string.Thus

grep bill /etc/passwd

will print each line in the file/etc/passwdwhich contains the string ‘bill’.Actually,
grep scans forregular expressionsin the sense of the editors ‘ed (1)’ and ‘ex (1)’. Grep
stands for ‘globally findregular expressionand print’ (2.4).

head Thehead command prints the first few lines of one or more files.If you have a bunch of
files containing text which you are wondering about it is sometimes useful to runhead
with these files as arguments. Thiswill usually show enough of what is in these files to
let you decide which you are interested in (1.5).
Head is also used to describe the part of apathnamebefore and including the last ‘/’
character. The tail of apathnameis the part after the last ‘/’.The ‘:h’ and ‘:t’ modifiers
allow theheador tail of apathnamestored in a shell variable to be used (3.6).

history Thehistory mechanism of the shell allows previous commands to be repeated, possibly
after modification to correct typing mistakes or to change the meaning of the command.
The shell has ahistory list where these commands are kept, and ahistory variable which
controls how large this list is (2.3).

home directory
Each user has ahome directory, which is given in your entry in the password file,
/etc/passwd. This is the directory which you are placed in when you first login.Thecd
or chdir command with no arguments takes you back to this directory, whose name is
recorded in the shell variablehome. You can also access thehome directories of other

-- --

An Introduction to the C shell USD:4-39

users in forming filenames using afilename expansion notation and the character ‘˜’
(1.6).

if A conditional command within the shell, theif command is used in shell command
scripts to make decisions about what course of action to take next (3.6).

ignoreeof Normally, your shell will exit, printing ‘logout’ if you type a control-d at a prompt of ‘%
’. This is the way you usually log off the system.You canset the ignoreeof variable if
you wish in your.login file and then use the commandlogout to logout. This is useful
if you sometimes accidentally type too many control-d characters, logging yourself off
(2.2).

input Many commands onUNIX take information from the terminal or from files which they
then act on.This information is calledinput. Commands normally read forinput from
their standard input which is, by default, the terminal.This standard input can be redi-
rected from a file using a shell metanotation with the character ‘<’.Many commands
will also read from a file specified as argument. Commandsplaced inpipelineswill read
from the output of the previous command in thepipeline. The leftmost command in a
pipeline reads from the terminal if you neither redirect itsinput nor give it a filename to
use asstandard input. Special mechanisms exist for supplying input to commands in
shell scripts (1.5, 3.8).

interrupt Aninterrupt is a signal to a program that is generated by typing ˆC. (On older versions
of UNIX the RUBOUT or DELETE key were used for this purpose.)It causes most pro-
grams to stop execution. Certainprograms, such as the shell and the editors, handle an
interrupt in special ways, usually by stopping what they are doing and prompting for
another command.While the shell is executing another command and waiting for it to
finish, the shell does not listen tointerrupts. The shell often wakes up when you hit
interrupt because many commands die when they receive an interrupt (1.8, 3.9).

job Oneor more commands typed on the same input line separated by ‘|’ or ‘;’ characters are
run together and are called ajob . Simple commands run by themselves without any ‘ |’
or ‘;’ characters are the simplestjobs. Jobs are classified asforeground, background, or
suspended(2.6).

job control The builtin functions that control the execution of jobs are calledjob control commands.
These arebg, fg, stop, kill (2.6).

job number When each job is started it is assigned a small number called ajob numberwhich is
printed next to the job in the output of thejobs command. Thisnumber, preceded by a
‘%’ character, can be used as an argument tojob control commands to indicate a specific
job (2.6).

jobs Thejobs command prints a table showing jobs that are either running in thebackground
or aresuspended(2.6).

kill A command which sends a signal to a job causing it to terminate (2.6).

.login Thefile .login in your home directory is read by the shell each time you login toUNIX

and the commands there are executed. Thereare a number of commands which are use-
fully placed here, especiallyset commands to the shell itself (2.1).

login shell The shell that is started on your terminal when you login is called yourlogin shell. It is
different from other shells which you may run (e.g. on shell scripts) in that it reads the
.login file before reading commands from the terminal and it reads the.logout file after
you logout (2.1).

logout Thelogout command causes a login shell to exit. Normally, a login shell will exit when
you hit control-d generating anend-of-file, but if you have set ignoreeof in you .login
file then this will not work and you must uselogout to log off theUNIX system (2.8).

.logout Whenyou log off of UNIX the shell will execute commands from the file.logout in your
homedirectory after it prints ‘logout’.

-- --

USD:4-40 AnIntroduction to the C shell

lpr The commandlpr is the line printer daemon.The standard input oflpr spooled and
printed on theUNIX line printer. You can also give lpr a list of filenames as arguments to
be printed.It is most common to uselpr as the last component of apipeline (2.3).

ls Thels (list files) command is one of the most commonly usedUNIX commands. With no
argument filenames it prints the names of the files in the current directory. It has a num-
ber of usefulflag arguments, and can also be given the names of directories as argu-
ments, in which case it lists the names of the files in these directories (1.2).

mail Themail program is used to send and receive messages from otherUNIX users (1.1, 2.1),
whether they are logged on or not.

make The make command is used to maintain one or more related files and to organize func-
tions to be performed on these files.In many waysmake is easier to use, and more help-
ful than shell command scripts (3.2).

makefile Thefile containing commands formake is calledmakefile or Makefile (3.2).

manual Themanual often referred to is the ‘UNIX manual’. Itcontains 8 numbered sections with
a description of eachUNIX program (section 1), system call (section 2), subroutine (sec-
tion 3), device (section 4), special data structure (section 5), game (section 6), miscella-
neous item (section 7) and system administration program (section 8).There are also
supplementary documents (tutorials and reference guides) for individual programs which
require explanation in more detail.An online version of themanual is accessible
through theman command. Itsdocumentation can be obtained online via

man man

If you can’t decide what manual page to look in, try theapropos(1) command.The sup-
plementary documents are in subdirectories of /usr/doc.

metacharacter
Many characters which are neither letters nor digits have special meaning either to the
shell or toUNIX . These characters are calledmetacharacters. If i t is necessary to place
these characters in arguments to commands without them having their special meaning
then they must bequoted. An example of ametacharacter is the character ‘>’ which is
used to indicate placement of output into a file.For the purposes of thehistory mecha-
nism, most unquotedmetacharacters form separate words (1.4). The appendix to this
user’s manual lists themetacharacters in groups by their function.

mkdir Themkdir command is used to create a new directory.

modifier Substitutionswith the history mechanism, keyed by the character ‘!’or of variables
using the metacharacter ‘$’, are often subjected to modifications, indicated by placing
the character ‘:’ after the substitution and following this with themodifier itself. The
command substitutionmechanism can also be used to perform modification in a similar
way, but this notation is less clear (3.6).

more Theprogrammore writes a file on your terminal allowing you to control how much text
is displayed at a time.More can move through the file screenful by screenful, line by
line, search forward for a string, or start again at the beginning of the file.It is generally
the easiest way of viewing a file (1.8).

noclobber Theshell has a variablenoclobber which may be set in the file.login to prevent acci-
dental destruction of files by the ‘>’ output redirection metasyntax of the shell (2.2, 2.5).

noglob Theshell variablenoglob is set to suppress thefilename expansionof arguments con-
taining the metacharacters ‘˜’, ‘*’, ‘?’, ‘[’ and ‘]’ (3.6).

notify Thenotify command tells the shell to report on the termination of a specificbackground
job at the exact time it occurs as opposed to waiting until just before the next prompt to
report the termination.The notify variable, if set, causes the shell to always report the
termination ofbackground jobs exactly when they occur (2.6).

-- --

An Introduction to the C shell USD:4-41

onintr Theonintr command is built into the shell and is used to control the action of a shell
command script when aninterrupt signal is received (3.9).

output Many commands inUNIX result in some lines of text which are called theiroutput. This
output is usually placed on what is known as thestandard output which is normally
connected to the user’s terminal. Theshell has a syntax using the metacharacter ‘>’ for
redirecting thestandard output of a command to a file (1.3).Using thepipe mechanism
and the metacharacter ‘|’ it is also possible for thestandard output of one command to
become thestandard input of another command (1.5).Certain commands such as the
line printer daemonp do not place their results on thestandard output but rather in
more useful places such as on the line printer (2.3).Similarly thewrite command places
its output on another user’s terminal rather than itsstandard output (2.3). Commands
also have adiagnostic outputwhere they write their error messages.Normally these go
to the terminal even if the standard output has been sent to a file or another command,
but it is possible to direct error diagnostics along withstandard output using a special
metanotation (2.5).

path Theshell has a variable path which gives the names of the directories in which it
searches for the commands which it is given. It always checks first to see if the com-
mand it is given is built into the shell.If it is, then it need not search for the command as
it can do it internally. If the command is not builtin, then the shell searches for a file
with the name given in each of the directories in thepath variable, left to right. Since
the normal definition of thepath variable is

path (./usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard system directo-
ries ‘/usr/ucb’, ‘/bin’ and ‘/usr/bin’ for the named command (2.2).If the command can-
not be found the shell will print an error diagnostic.Scripts of shell commands will be
executed using another shell to interpret them if they hav e‘execute’ permission set.This
is normally true because a command of the form

chmod 755 script

was executed to turn this execute permission on (3.3).If you add new commands to a
directory in thepath, you should issue the commandrehash (2.2).

pathname Alist of names, separated by ‘/’ characters, forms apathname. Each component,
between successive ‘/’ characters, names a directory in which the next componentfile
resides.Pathnameswhich begin with the character ‘/’ are interpreted relative to theroot
directory in the filesystem.Otherpathnamesare interpreted relative to the current direc-
tory as reported bypwd. The last component of apathnamemay name a directory, but
usually names a file.

pipeline Agroup of commands which are connected together, the standard output of each con-
nected to thestandard input of the next, is called apipeline. Thepipe mechanism used
to connect these commands is indicated by the shell metacharacter ‘|’ (1.5, 2.3).

popd Thepopd command changes the shell’s working directory to the directory you most
recently left using thepushdcommand. Itreturns to the directory without having to type
its name, forgetting the name of the currentworking directory before doing so (2.7).

port Thepart of a computer system to which each terminal is connected is called aport .
Usually the system has a fixed number ofports, some of which are connected to tele-
phone lines for dial-up access, and some of which are permanently wired directly to spe-
cific terminals.

pr Thepr command is used to prepare listings of the contents of files with headers giving
the name of the file and the date and time at which the file was last modified (2.3).

printenv The printenv command is used to print the current setting of variables in the environ-
ment (2.8).

-- --

USD:4-42 AnIntroduction to the C shell

process Aninstance of a running program is called aprocess(2.6). UNIX assigns eachprocessa
unique number when it is started − called theprocess number. Process numbers can be
used to stop individual processesusing thekill or stop commands when theprocesses
are part of a detachedbackground job.

program Usuallysynonymous withcommand; a binary file or shell command script which per-
forms a useful function is often called aprogram.

prompt Many programs will print aprompt on the terminal when they expect input. Thus the
editor ‘ex (1)’ will print a ‘:’ when it expects input.The shellprompts for input with ‘%
’ and occasionally with ‘? ’ when reading commands from the terminal (1.1).The shell
has a variableprompt which may be set to a different value to change the shell’s main
prompt. This is mostly used when debugging the shell (2.8).

pushd Thepushdcommand, which means ‘push directory’, changes the shell’s working direc-
tory and also remembers the currentworking directory before the change is made,
allowing you to return to the same directory via thepopd command later without retyp-
ing its name (2.7).

ps Theps command is used to show the processes you are currently running.Each process
is shown with its unique process number, an indication of the terminal name it is
attached to, an indication of the state of the process (whether it is running, stopped,
aw aiting some event (sleeping), and whether it is swapped out), and the amount ofCPU

time it has used so far. The command is identified by printing some of the words used
when it was invoked (2.6). Shells,such as thecsh you use to run theps command, are
not normally shown in the output.

pwd Thepwd command prints the fullpathnameof the currentworking directory. Thedirs
builtin command is usually a better and faster choice.

quit Thequit signal, generated by a control-\, is used to terminate programs which are behav-
ing unreasonably. It normally produces a core image file (1.8).

quotation Theprocess by which metacharacters are prevented their special meaning, usually by
using the character ‘´ in pairs, or by using the character ‘\’, is referred to asquotation
(1.7).

redirection Therouting of input or output from or to a file is known asredirection of input or output
(1.3).

rehash Therehash command tells the shell to rebuild its internal table of which commands are
found in which directories in yourpath. This is necessary when a new program is
installed in one of these directories (2.8).

relative pathname
A pathnamewhich does not begin with a ‘/’ is called arelative pathnamesince it is
interpretedrelative to the currentworking directory. The first componentof such a
pathnamerefers to some file or directory in theworking directory, and subsequentcom-
ponentsbetween ‘/’ characters refer to directories below the working directory. Path-
namesthat are notrelative are calledabsolute pathnames(1.6).

repeat Therepeat command iterates another command a specified number of times.

root Thedirectory that is at the top of the entire directory structure is called theroot directory
since it is the ‘root’ of the entire tree structure of directories.The name used inpath-
names to indicate theroot is ‘/’. Pathnamesstarting with ‘/’ are said to beabsolute
since they start at theroot directory. Root is also used as the part of apathnamethat is
left after removing theextension. Seefilenamefor a further explanation (1.6).

RUBOUT The RUBOUT or DELETE key is often used to erase the previously typed character; some
users prefer theBACKSPACE for this purpose.On older versions ofUNIX this key served
as theINTR character.

-- --

An Introduction to the C shell USD:4-43

scratch file Files whose names begin with a ‘#’ are referred to asscratch files, since they are auto-
matically removed by the system after a couple of days of non-use, or more frequently if
disk space becomes tight (1.3).

script Sequencesof shell commands placed in a file are called shell commandscripts. It is
often possible to perform simple tasks using thesescripts without writing a program in a
language such as C, by using the shell to selectively run other programs (3.3, 3.10).

set Thebuiltin set command is used to assign new values to shell variables and to show the
values of the current variables. Many shell variables have special meaning to the shell
itself. Thusby using theset command the behavior of the shell can be affected (2.1).

setenv Variables in the environment ‘environ (5)’ can be changed by using thesetenv builtin
command (2.8).Theprintenv command can be used to print the value of the variables in
the environment.

shell A shell is a command language interpreter. It is possible to write and run your own
shell, as shells are no different than any other programs as far as the system is con-
cerned. Thismanual deals with the details of one particularshell, calledcsh.

shell script Seescript (3.3, 3.10).

signal A signal in UNIX is a short message that is sent to a running program which causes
something to happen to that process.Signals are sent either by typing specialcontrol
characters on the keyboard or by using thekill or stop commands (1.8, 2.6).

sort Thesort program sorts a sequence of lines in ways that can be controlled by argument
flags (1.5).

source Thesource command causes the shell to read commands from a specified file.It is most
useful for reading files such as.cshrc after changing them (2.8).

special character
Seemetacharacters and the appendix to this manual.

standard We refer often to thestandard input andstandard output of commands.Seeinput and
output (1.3, 3.8).

status Acommand normally returns astatus when it finishes.By convention astatus of zero
indicates that the command succeeded.Commands may return non-zerostatus to indi-
cate that some abnormal event has occurred.The shell variablestatus is set to thestatus
returned by the last command.It is most useful in shell commmand scripts (3.6).

stop Thestop command causes abackground job to becomesuspended(2.6).

string A sequential group of characters taken together is called astring. Strings can contain
any printable characters (2.2).

stty Thestty program changes certain parameters insideUNIX which determine how your ter-
minal is handled.See ‘stty (1)’ for a complete description (2.6).

substitution Theshell implements a number ofsubstitutionswhere sequences indicated by metachar-
acters are replaced by other sequences.Notable examples of this are historysubstitution
keyed by the metacharacter ‘!’ and variablesubstitution indicated by ‘$’. We also refer
to substitutionsasexpansions(3.4).

suspended Ajob becomessuspendedafter aSTOP signal is sent to it, either by typing acontrol -z at
the terminal (forforeground jobs) or by using thestop command (forbackground jobs).
Whensuspended, a job temporarily stops running until it is restarted by either thefg or
bg command (2.6).

switch Theswitch command of the shell allows the shell to select one of a number of sequences
of commands based on an argument string.It is similar to theswitch statement in the
language C (3.7).

termination Whena command which is being executed finishes we say it undergoestermination or
terminates. Commands normally terminate when they read anend-of-file from their

-- --

USD:4-44 AnIntroduction to the C shell

standard input. It is also possible to terminate commands by sending them aninterrupt
or quit signal (1.8).Thekill program terminates specified jobs (2.6).

then Thethen command is part of the shell’s ‘if-then-else-endif ’control construct used in
command scripts (3.6).

time Thetime command can be used to measure the amount ofCPU and real time consumed
by a specified command as well as the amount of disk i/o, memory utilized, and number
of page faults and swaps taken by the command (2.1, 2.8).

tset Thetset program is used to set standard erase and kill characters and to tell the system
what kind of terminal you are using.It is often invoked in a.login file (2.1).

tty Theword tty is a historical abbreviation for ‘teletype’ which is frequently used inUNIX

to indicate theport to which a given terminal is connected.The tty command will print
the name of thetty or port to which your terminal is presently connected.

unalias Theunalias command removes aliases (2.8).

UNIX UNIX is an operating system on whichcsh runs. UNIX provides facilities which allow
csh to invoke other programs such as editors and text formatters which you may wish to
use.

unset Theunsetcommand removes the definitions of shell variables (2.2, 2.8).

variable expansion
Seevariablesandexpansion(2.2, 3.4).

variables Variables in csh hold one or more strings as value. Themost common use ofvariables
is in controlling the behavior of the shell.Seepath, noclobber, and ignoreeof for exam-
ples. Variables such asargv are also used in writing shell programs (shell command
scripts) (2.2).

verbose Theverboseshell variable can be set to cause commands to be echoed after they are his-
tory expanded. Thisis often useful in debugging shell scripts.The verbosevariable is
set by the shell’s −v command line option (3.10).

wc Thewc program calculates the number of characters, words, and lines in the files whose
names are given as arguments (2.6).

while Thewhile builtin control construct is used in shell command scripts (3.7).

word A sequence of characters which forms an argument to a command is called aword .
Many characters which are neither letters, digits, ‘−’, ‘.’ nor ‘/’ form words all by them-
selves even if they are not surrounded by blanks.Any sequence of characters may be
made into aword by surrounding it with ‘´’ characters except for the characters ‘´’ and
‘!’ which require special treatment (1.1).This process of placing special characters in
words without their special meaning is calledquoting.

working directory
At any giv en time you are in one particular directory, called yourworking directory.
This directory’s name is printed by thepwd command and the files listed byls are the
ones in this directory. You can changeworking directoriesusingchdir .

write The write command is an obsolete way of communicating with other users who are
logged in toUNIX (you have to take turns typing). If you are both using display termi-
nals, usetalk(1), which is much more pleasant.

-- --

